Liftings for Noncomplete Probability Spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear liftings for non - complete probability spaces

We show that it is consistent with ZFC that L(Y,B, ν) has no linear lifting for many non-complete probability spaces (Y,B, ν), in particular for Y = [0, 1], B = Borel subsets of Y , ν = usual Radon measure on B. AMS Subject Classification 1980 (1985 revision): Primary: 28A51 Secondary: 03E35 1) Research supported by UPEI Senate Grant no 602101, by the Research Institute for Mathematical Science...

متن کامل

Splitting of liftings in products of probability spaces

We prove that if (X,A, P ) is an arbitrary probability space with countably generated σ-algebra A, (Y,B,Q) is an arbitrary complete probability space with a lifting ρ and R̂ is a complete probability measure on A ⊗̂R B determined by a regular conditional probability {Sy :y ∈ Y } on A with respect to B, then there exist a lifting π on (X × Y,A ⊗̂R B, R̂) and liftings σy on (X, Ây, Ŝy), y ∈ Y , such ...

متن کامل

Liftings of Holomorphic Maps into Teichmüller Spaces

We study liftings of holomorphic maps into some Teichmüller spaces. We also study the relationship between universal holomorphic motions and holomorphic lifts into Teichmüller spaces of closed sets in the Riemann sphere.

متن کامل

A Spectral Sequence for Classifying Liftings in Fiber Spaces

where pg « ƒ and p is a fibration with fiber F. Suppose that X is a CW-complex of dimension ^2conn(/ ) and conn (F) è l (conn = connectivity). Let [X, Y]B be the set of homotopy classes of pointed maps over f(H : X XI~*Y is a homotopy over ƒ if pHt—f for each / £ / ) . Becker proved in [2], [3] that under these hypotheses [X, Y]B can be given an abelian group structure with [g] as zero element....

متن کامل

Maass Spaces and a Characterization of Images of Ikeda Liftings

For an arbitrary even genus n we show that the subspace of Siegel cusp forms of weight k + n/2 generated by Ikeda lifts of elliptic cusp forms of weight 2k can be characterized by certain linear relations among Fourier coefficients. This generatizes the work of Kohnen and Kojima. We investigate the analogous subspaces of hermitian and quaternionic cusp forms. Introduction Ikeda [7] constructed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of the New York Academy of Sciences

سال: 1993

ISSN: 0077-8923,1749-6632

DOI: 10.1111/j.1749-6632.1993.tb52507.x